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1. Introduction 
The wall-jet is the flow of fluid emanating from a narrow slot and blowing over a 
rigid wall. The configuration of the turbulent wall-jet is that of a very narrow, 
plane, turbulent half-jet investigated by Liepmann & Laufer (1947). The width 
of the slot is of the order of the boundary layer on the infinite wall and the jet, in 
this case, mixes with a stream moving with constant velocity. This flow has 
drawn considerable basic and applied interest in the past few years for it has the 
characteristics of both a boundary-layer and a free-mixing flow. 

The similarity solution approach to boundary-value problems in fluid mecha- 
nics has been useful. This approach has been effectively used by Glauert (1956) 
for the solution of the wall-jet in a still medium. Based on physical reasoning he 
was the f i s t  to postulate that, in a strict sense, the entire flow of the wall-jet 
cannot conform to one overall similarity solution. He divided the flow into an 
inner and outer portion on either side of the maximum velocity and treated the 
two regions separately. Eichelbrenner & Dumargue (1962) treated the plane, 
turbulent wall-jet in a moving stream of constant velocity. They also separated 
the flow into two regions; Glauert’s solution for the inner profile and Gortler’s 
solution of the mixing of two parallel streams for the outer profile. However, the 
point of joining occurs between the maximum velocity and the inflexion point in 
the outer profile, thereby avoiding Glauert’s discontinuity in the eddy viscosity. 

The present experimental investigation of a plane, steady, turbulent wall-jet 
with negligible longitudinal pressure gradients in a constant moving stream, with 
varying ratios of jet to free-stream velocity definitely supports Glauert’s reason- 
ing, though the precise point of partition of the flow might be in question. The 
inner layer is constantly losing momentum due to the frictional stresses at the 
wall, while the outer layer tends to preserve its momentum; the division now 
occurring at the point of zero shear which may not coincide with the location of 
maximum velocity. This separation of null shears was first pointed out by 
Eskinazi & Yeh (1956) who showed that for asymmetrical velocity profiles the 
zero value of the fluctuating velocity correlation UV was not at the point of 
maximum velocity. For the wall-jet this phenomena was indicated by Mathieu 
(1959) and is definitely shown by the present data. 

Pate1 & Newman (1961), in working with the wall-jet in a moving stream, 
defined and supported a simple set of similarity functions for the mean and turbu- 
lent flow which were found not to be very agreeable with our experiments. Under 
these conditions they concluded analytical similarity to be possible only if the 
ratio of maximum excess to free-stream velocity remained constant. 
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The analysis and experimental results are compared with those of previous 
investigators and a definite comparison of this work with those performed in a 
quiescent free stream is achieved through transformation of co-ordinates. 

2. Analytical considerations 
In  most boundary-layer and free-mixing problems the existence of a dimen- 

sionless similarity function f(7) in the velocity field, where T,I is the transverse 
distance made dimensionless with a x-dependent characteristic dimension, 
usually reduces the Prandtl-type partial differential equation of motion to a 
dimensionless total differential equation. The coefficients of this equation are 
constant provided the similarity functionf(7) is postulated to be independent of 
the history of the flow (x in the steady case). In  boundary-layer flows the free- 
stream velocity and the boundary-layer thickness are found to be suitable 
characteristic quantities, while in free-mixing flows the maximum velocity at 
any longitudinal section and the corresponding half-width of the jet or wake are 
adequate. In  the analytical treatment, for similar solutions to exist, the substitu- 
tion off(7) in the dynamical equations must yield a differential equation inf that 
is completely independent of x. The coefficients of this equation must then also 
be constant with x and thus give additional relations between various flow 
properties for which this ‘analytical similarity’, as we shall call it, must exist. 
Experimental results are usually valuable in establishing the definition of the 
similarity function and its variable. This does not imply, however, that in general 
the definition of 7 andf(7) thus obtained and which yields an apparent ‘experi- 
mental similarity ’ will also yield analytical similarity, or vice-versa. The reason 
for introducing these two different similitudes is that the form of the similarity 
function which will satisfy experiment and analysis is not always apparent. In  
the absence of longitudinal pressure gradients many authors, including the 
present ones, have found very convincing experimental similitude not only in the 
confines of their own experiments but, as it will be shown in this paper, also for 
varying ratios of free stream to jet velocities. 

As mentioned previously, Glauert as well as Eichelbrenner & Dumargue 
showed that strictly speaking there cannot be a general similarity for the entire 
wall-jet. This was verified conclusively by the experiments of the authors 
(1962a). The flow is divided into two regions separated by the position at which 
the correlation zlv = 0. However, since the determination of this position is 
impractical for mean velocity considerations, the location of the maximum 
velocity is chosen as the dividing point. The region from the wall to the maximum 
velocity will be referred to as the inner or wall region and that from the maximum 
velocity point to the beginning of the free stream as the outer or free-mixing 
region. 

(a)  Similarity in the wall region 
Figure 1 shows that, in the wall region, there is a fair experimental similarity in 
the temporal mean velocity for the free stream to jet velocity ratio ,8 = 0.100. 
The similarity transformation variable is defined as y/6, and the similarity 
functionf(7) as U/U,. For definition of terms see figure 2 which describes the 
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geometry of the flow. The effects of different ,8’s onf(7) will be discussed later. 
The Reynolds equation in the longitudinal direction for zero pressure gradient is 
given by 

Y / 4  
FIQURE 1. Non-dimensional velocity profile in the wall region. 

U 

-~ ~ 

FIGURE 2. Velocity profile and its geometry. 

where U and V are the temporal mean velocities in the longitudinal and lateral 
directions, respectively, u and v the corresponding fluctuating components, T the 
total shear stress, U ,  the shearing velocity and x the longitudinal distance from 
the virtual origin xo. Near the wall the contribution of the difference in the normal 
Reynolds stresses is small compared with the other terms and will be neglected. 
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Substituting the quantities 7 andf(q) in the continuity equation and integrating 
for V one obtains 

Finally, using (2) and the similarity definitions in (l), the simplified Reynolds 
equation becomes 

10 20 
.z (in.) 

30 40 

FIGURE 3. Similarity condition in the wall region. 

Division of (3) by the first-dimensional coefficient yields 

Forf(q) in (4) to be a unique, similar solution of one variable q representing the 
entire inner flow, its functional must be independent of z and y. Hence all the 
coefficients off and functions off must be proportional. Thus 

The solution of this equation yields 

urns,. = co, ( 5 )  
where a = (1 + k)- l .  

This is found to be true experimentally for each p in figure 3, however, with a 
being a function of p. 
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As in the case of the boundary layer, the experiments of Pate1 (1962) and 
Schwarz & Cosart (1961) showed thatf(7) can be represented as yl’n with n = 11.0 
and 14.0, respectively. The present work indicates that 

f(7) = 1.0371’n 

accurately describes the data for values of 7 up to 0.7, however, with the values 
of n varying with /3: for /3 = 0.263, n = 10.3; /3 = 0.100, n = 13.4; /3 = 0.055, 
n = 12.3. Although n was found to vary by about 30 % the value of the integral 
of the velocity profiles varied slightly if taken up to y = a,, the point at which the 
shear is zero. 

- 0  0.2 0.4 0.6 0.8 1 .o 
Y A  

FIGURE 4. Non-dimensional shear profile in the wall region. 

Substituting the expression forf(7) in (4) leads to 

which upon integration with respect to y yields 

where U, designates the wall shearing velocity. Use of the condition UZ, = 0 a t  
y = 8, in the above relation leads to 

UZ,(y) = u:[l- (y/8,)(1+2’n)]. ( 6 )  

This relation between UZ, and y in the wall region is supported experimentally 
as shown in figure 4. 

To obtain the wall shear an integration for the entire flow is usually performed; 
however, since the contribution from the free stream to y = 8, is zero, only the 
inner portion needs to be considered. The integration of ( 3 )  from y = 0 to y = a,, 
or from 7 = 0 to 7 = 7,, then yields the wall shear in the form 

Due to ( 5 )  and the values of a listed on figure 8 the second term on the right-hand 
side of the equality sign is small compared to the first. If the wall shear is sought 
from one similarity function for the whole flow then, since 7, must be replaced by 
infinity andf(co) = 0, the second term to the right of (7) is all that remains in the 
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shear equation. Therefore it stands to reason that the wall shear obtained from 
an overall similarity function, satisfying the free-mixing flow as well, will yield 
incorrect results. Letting 

and introducing (5) in (7), 

2.4 

2.0 

1.6 

g 1.2 

1 %  

0.8 

0.4 

0 

ps’ 
p =: 0.100 

x’/d, = 137.0 

A 190.8 

+ 2743 

Ir 320.6 
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F~GVRE 5. Turbulence similarity in the well region. 

For all values of p of the present and many other investigations, figure 6 gives 

s, = cx, 

urn = clx-a, where c = 0.0109. Hence 

which is verified experimentally with fair agreement in figure 8. Use of the above 
two relations in the expression for wall shear leads to 

u: = cc2,x-yall .  + (4 - $) (1 -a)], (10) 

where the second term in the brackets is of second order compared to a@. In  the 
form of the friction coefficient cf = 2rw/pU&, where rw is the wall shear, (10) reads 

C f  = 2c[a?lf+(Q)-?lf.)(l-a)]. (11) 

Mathieu (1961) describes a very, similar approach for the evaluation of c f .  
Experimental verification of the above two equations will be described later. 
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( b )  Similarity in the free-mixing region 
Since the behaviour of wall-jets with and without free streams is unified in this 
paper, the following relative concept of mixing history is found to be necessary 
for the correlation of all results. For the longitudinal distances considered the 
major portion of the flow consists of the free-mixing region. The fact that a free 

FIGURE 6. 

B Re 
A 0.055 26,270 

0.100 13,060 
v 0.100 11,420 
0 0.263 10,740 

0.263 5,790 
A 0.274 8,420 

(x' + xo) do 

Growth on a characteristic width in the wall region. 

P Re P 
0 0.485 3,750 a 0.190 Verhoff (1963) 
0 0.386' Q 0 Verhoff (1963) 
\ 0.333 Patel (1962) 0.170 George (1959) 

0 0.125 Thomas (1962) 
A 0  0 Mathieuetal. (1961) 
1, 0.082 Verhoff (1963) 0 0 Myers et al. (1961). 

h 0.168 i 
stream with low turbulence is present suggests that the outer flow in the wall-jet 
must be viewed as a motion relative to that of the free stream. An infinitesimal 
longitudinal distance travelled by the fluid relative to the stationary wall is 

The distance travelled by the same particle relative to the free stream is 

Hence the transformation of these co-ordinate differentials is given by 

dx' = Udt = ( q + A U ) d t .  

dx, = AUdt. 

dx'ldx, = 1 + U,/AU. (12) 

Patel & Newman (1961) have shown for the case of a wall-jet with a free stream 
and Schwarz & Cosart (1961) for the case of no free stream that analytical 
similarity predicts the excess velocity to decay as the longitudinal distance 
raised to a power. The present experiments shown in figure 9 verify this power 

(131 
law. Then 

Now 
AU = c3x:. 

dx' = 1 + ( &/C3X,a)  ax,, 
36 Fluid Mech. 20 
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and integrating from a virtual origin x' = -xo corresponding to x, = 0, the 
transformation of the longitudinal co-ordinate becomes 

X 2' +xo - xs = 1 + u,/[( 1 -a) c , g ]  - 1 + Us/[( 1 -a) c&] * 

If one chooses a characteristic value of c3 obtained from the velocity maximum 
then the previous transformation becomes 

x, = (14) 1 + &/[( 1 -a) AU,] * 

This is the basic transformation equation in the outer region. In  the case of no 
free stream, V,  = 0,  the relative length scale x, reduces to the actual longitudinal 
distance x measured from a virtual origin xo which is characteristic of free-mixing 
flows (see, for instance, Townsend 1956). It is found, as shown in figure 9, that 
the exponent a is constant with xs for a given ratio of free stream to jet velocity 

15 

5 

O O  50 100 150 200 250 

X * P O  

FIGURE 7. Growth of a characteristic width in the free-mixing region. 

and furthermore that its variation with Reynolds number, if any, is minimal. 
This exponent is found to decrease with p. The remarkable usefulness of xs in 
correlating characteristic dimensions at various p was already shown by the 
authors (1962a). Figure 7, where the characteristic width of the free-mixing 
flow (6- 6,) is shown to fall under one relationship for different values of ,8 and 
various investigations, further indicates the merits of this reduced co-ordinate. 
Thus from experimental evidence 

where cp = 0.0601. 
Pate1 & Newman (1961) and others have derived this relation by assuming 

analytical similarity for the entire flow. It should be emphasized here that for 
p + 0 and zero pressure gradients, (6 - 8,) is neither a linear nor a unique function 
of x. 

(6-61) = c4x89 (15) 
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FIGURE 8. Decay of maximum velocity. 
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FIUURE 9. Decay of maximum excess velocity. 
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When similarity is sought for the velocity in the free mixing region with pnon- 
zero, the relative velocity- AU = U - U, must be considered. Figure 9 has already 
shown that a unique relationship exists between AU, and xs. This relation is that 
of (13). However, the figure also shows that the coefficient is a function of the 

(1  -w 
FIavRE 10. Decay exponent of excess velocity. 
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FIGURE 11. Coefficient in (13). 
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exit Reynolds number Re, while the exponent a is a function of the velocity 
ratio j3. Figure 10, showing the exponents for all the present experiments together 
with those of previous investigators, suggests that 

(16) 

c3 = 0*0287(U0dO/v), (17) 

a = 1.06( 1 - ,4)-l- 0.50, 

while figure 11 indicates that 

where Uo = V, - U, is the excess velocity at the jet exit, do is the slot width, 
Y the kinematic viscosity and c3 is given in units of ft. (in.)a/sec. From these 
relations it is evident that 

AUm/Uo = (0*0287 /~ )  d o e .  (18) 

0 0.263 10,740 
0.263 5,790 

a0.274 8,420 
0485 3,750 

b 07-0.333, Thomas 
0 O-tO.170, George 
00.168+0.333, Patel 

d0zt ( inP+a))  

FIGURE 12. Unified decay of maximum excess velocity. 

For all values of ,4 previously displayed in figure 9, the present experiments and 
those of Patel (1962), George (1959) and Thomas (1962) are shown to collapse into 
the single relation of (18) as shown in figure 12. 

Since the decay of the maximum excess velocity has been found as a function 
of distance, the outer flow suggests a similarity function for the temporal mean 
velocity of the same form as in the usual free-mixing flows 

AUIhU, = N3, (19) 

U = AU,P(<)+U,, (20) 

where the reduced, dimensionless variable is (y - S,)/(S - SJ. The velocity then 
can be expressed as 

where in the present experiments Us is constant with x but varies in value for 
different P’s. This similarity transformation is shown in figure 13 to agree well 
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with the experimental results of the outer flow for many values of p. In  fact, for 
/? = 0 i t  reduces to the well-known similarity form of simple jets and wakes. One 
disadvantage of this relation is that it brings considerable restrictions in satis- 
fying analytical similarity. If one follows the procedure described for obtaining 
analytical similarity in the inner flow and substitutes (20) in the Reynolds 
equation, one immediately sees that the first inertia term UalJjax gives 

After expansion of the above relation, the coefficients of P((), P‘(5) and c or any 
product of them must depend on x in the same manner for the concept of simi- 
larity to hold. It is apparent then that the two quantities AU, and V,  in the first 
bracket must be proportional to each other. This is the restriction Pate1 & 
Newman (1961) have followed in their investigation and which is shown in our 

(Y- ~ 1 ) / ( ~ - ~ 1 )  

FIGURE 13. Non-dimensional velocity profile. 

experiments to be unnecessary for similarity to exist. This conflict between the 
conditions for analytical and experimental similarity for the case of a constant 
free stream can only be resolved by the fact that (20) is one restrictive form of the 
general velocity similarity function. The fact that (20) agrees well with experi- 
mental mean velocity should be considered as a fair approximation. However, 
no inference should be made that there does not exist a more general form of (20) 
that satisfies both experimental and analytical similarity. All experimental 
results of the mean and turbulent quantities point to the existence of similarity 
in the free-mixing region of the flow. 
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3. Experimental method 
(d) Wind tunnel 

The present investigation was conducted in a plane wall-jet blowing tangentially 
to a semi-infinite, rigid wall and under a uniform moving free stream. The volume 
rate of air supplied to the wall-jet and that supplied to the free stream was con- 
trolled independently to give values of the velocity ratio /? of 0.485, 0.274, 0.263, 
0.100 and 0.055. For large values of /? it  was found that a t  the origin of the mixing 

chamber gin.  - I 

Tunnel height = 56 in. 

Wall 
adjustable 
for dpldx = 0 I 

FIGURE 14. Schematic representation of wall-jet. 

a temperature difference of as much as 20 O F  could occur between the jet and free- 
stream flows. This, of course, would cause density effects that could not be ig- 
nored in the interpretation of the results. Hence the wall-jet was passed through 
a cooling system in order to remove the frictional heat due to the blower and 
settling chamber. A second important feature that was resolved in the design 
of the tunnel was the tolerance in the two-dimensionality of the slot. Those who 
have worked with plane jets know that a small percentage variation in the 
two-dimensionality a t  the jet exit magnifies in the downstream direction to 
undesirable levels. In  this investigation the slot width was 0-131 in. with a 
maximum variation of one percent throughout its entire height of 56 in. This 
tolerance was obtained by having the entire nozzle system cast out of steel- 
kirksite and handworked to the desired dimensions. The width of the free stream 
was 9.0in. running the entire height of the jet slot. Figure 14 shows a sketch of 
the tunnel in the test area. The free-stream wall of the tunnel was adjusted for an 
approximate zero-pressure gradient, in the longitudinal direction as shown in 
figure 15 for /? = 0.100. Under these conditions the maximum variation in the 
two-dimensionality over a 24 in. span of the flow was less than 1 % at the jet exit 
and less than 1.3 yo 90 slot widths downstream. 
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( b )  Mean velocity and pressure measurements 
Reference probes at 2’ = 0 in the Mall-jet and the free stream were used to main- 
tain constant flow conditions throughout the measurements. All mean velocities 
were computed from independent total and static pressure traverses of individual 
probes. A typical variation of static pressure in the lateral direction is shown in 
figure 15. The probes used were of the boundary-layer type, designed and tested 
for measurements near the wall. Although, as can be seen from figure 15, the 
static pressure varied substantially with z’ in the development region of the jet, 

0.010 

h 

4 0  

5 m 

5 
cu 
0 

.5 v 

u) -0,010 

PI 

- 0.020 

1 I 

- p = u I W  B = 0.100 

Re = 13,060 

n 

Lateral distance y (in.) 
I 

Jet wall - -  - I 

v 4 

Free stream 

0 10 20 30 40 

Longitudinal distance x’ (in.) 
FIGURE 15. Static pressure distributions. 

beyond 2’ = 6in., or d / d o  = 45-8, the longitudinal pressure gradient is essentially 
zero. In  general, then, traverses were taken at d / d 0  = 45-8, 99-2, 137.4, 190.8 
and 274.8. The pressures, when below 1-5 in. of water, were measured with an 
alcohol micromanometer of 0.0004 in. of water sensitivity; when above 1.5 in., 
with a precision inclined manometer. Mean velocity measurements in the 
immediate neighbourhood of the wall were made with a constant current hot-wire 
anemometer. 

The wall shear was measured independently with a flattened Preston probe 
calibrated in a pipe. The details of this calibration are presented in a separate 
work by McGrew (1960). Head & Rechenberg (1962) have shown that for a given 
skin friction the Preston probe reading was the same for both a fully developed 
pipe and boundary-layer flow. The reliability of the data obtained for the wall 
shear is indicated in figure 4 which shows the fair matching of hot-wire and 
Preston probe results. 

(c)  Turbulence measurements 
Turbulence measurements were taken with a multiple channel constant current 
hot-wire anemometer. The frequency response is reliable up to 100 kc/sec, but to 
eliminate noise, a matched 40 kc/sec filter was used in all measurements. Com- 
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pensation of the amplifier was achieved by the customary square-wave method. 
It was also checked by a phase-lag method which seems to be more precise but 
difficult to achieve in highlyturbulent flows. The wires are of 0.00015 in. diameter 
tungsten 0-040in. long and silver soldered to their supports. The wires were 
mounted with a slight slack in them as tight wires were found to vibrate in the 
flow. In  addition, rubber cement was put on the coated portion of the wire and 
the supports to further dampen any vibrations. All measurements, except those 
in the immediate neighbourhood of the wall and those for the microscale, were 
conducted with an X-array with the wires about 0.008 in. apart. On many 
occasions identical measurements were made with a dual channel constant 
temperature set; the results were found to agree within the scatter which in some 
cases is about 10%. The microscale was computed from measurements of the 
time rate of change of the instantaneous velocity. 

4. Experimental results 

investigated are listed in table 1. 
The values of all characteristic flow quantities of the various velocity ratios 

(a )  Temporal mean velocity 
Figures 1 and 13 have already shown the experimental similarity in the inner and 
outer portions of the flow. Plots for p’s other than 0.106 are as convincing but 
are not presented in this paper. Glauert’s solution is given for the free-mixing 
region and agrees well with the experiments except at the outer edge of the flow 
where it diverges from the present results. This is to be expected as Glauert 
assumed a constant eddy viscosity for the whole free-mixing region, which is 
known to be invalid a t  the outer edge. For comparison, Tollmien’s (1945) solution 
of the two-dimensional turbulent jet is also given on this figure. 

As discussed in $2, the maximum excess velocity AU, decays as stated in (IS), 
while the maximum velocity Urn can be approximated by (9). Experimental 
verification, including that of other investigators, is shown in figures 12 and 8. 
From the latter figure one can see that for higher p’s the simple form of (7), 
describing the decay of Urn, is not entirely satisfactory. The growth of the outer 
characteristic half width (6- 6,) is proportional to x,, as indicated by (15), while 
the inner characteristic width 8, increases with x as given by (8). Figures 7 and 6 
show all the present measurements in addition to those of many other experi- 
menters for various velocity ratios /I, including those for /3 = 0. It is clearly 
evident that the transformed co-ordinate x, is able to reduce all results to the 
single linear equation (15). Thus, in allowing comparison for all F’s, this reduced 
variable becomes a necessary tool. 

The velocity profile at any x for a given p ,  Uo and do can be reconstructed as 
follows. The exponent a can be evaluated from (16). Equation (18) gives AU, 
for a given x,. For that same xs, (6-6,) is given by (15). At this point, knowing 
the values of x,, AU,, the exponent a and U,, (14) gives the location of x. Hence, 
8, can be computed from (8). It must be remembered that Urn is best obtainable 
from AU, and U,. Considering the velocity similarity functions to be universal, 
then figures 1 and 13 at once give U = Ax, y )  for each similarity region. 
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The strong influence exerted by the free-mixing region upon the wall region 
becomes apparent in figure 16 which shows the universal veIocity distribution in 
the immediate vicinity of the wall. Though a boundary-layer type similarity is 
demonstrated, the constants in 

are different from the boundary-layer case as indicated on the graph, while the 
sublayer obeys the universal similarity form. It should be noted here that the 
effective opening of the Preston probe used was within the laminar sublayer and 

Y U T I V  

FIGURE 16. Law of the wall. 

the buffer region. This figure also contains the data of Mathieu (1961) for his 
plane, 5mm wide wall-jet inclined a t  an angle of 7 degrees to the wall and blowing 
at it from a distance of 200 mm. Mathieu did not find similarity in his case but, at 
the last station of x = 500 mm for which is effective x/d, cannot be calculated, his 
coefficients A and B begin to approach those of the present investigation. This 
indicates the possibility that the flow had not as yet become fully developed. The 
work of Pate1 further demonstrates the existence of similarity in this region; his 
results for /3 = 0.333 are also given. 

( 6 )  Xhear stress 

Figure 17, giving experimental results of the wall shear, verifies the power-law 
form of (10). However, the exponents a obtained independently from the 
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maximum velocity (9) and the wall shear (10) are found to disagree at high /? 
as shown on figure 8. Lettingf(7) = 1.Q3q1/", (10) and (11) become 

V .  Kruka and 8. Eskinazi 

U: = ( 1 ~ 0 3 ) ~  CC; 4 - qp+2/n)X-2a 
( n + l ) ( n + 2 )  

cf = 2( 1 - 0 3 ) 2 ~  n( - q3(1+2in)* 
(n + 1) (n + 2) 

Experimentally q3 was determined by hot-wire measurements close to the wall, 
that is, by necessity only a few measurements. Due to the scarcity and difficulty 
of measurements a definite relation between q3 and z cannot be established, 

x' (in.) 

FIGURE 17. Wall shear distribution. 

though it is certain that q3 < 1.0. The disagreement between exponents for the 
decay of the maximum velocity and wall shear a t  high /3 indicates a variation of 
y3 with x. Similarly, figure 18 reveals that experimentally constancy of cf with x 
is not maintained as predicted by (11) but that as in the boundary layer 

cf = c4 RT, 
where Ri is the Reynolds number of the wall region, the coefficient c6 and the 
exponent m vary with p as given on figure 18. The data of Mathieu & Tailland 
(1963), Bradshaw & Gee (1962) and Sigalla (1958) are also presented on this 
graph. It is seen that in the limit case of /?+ 0 the present exponent rn approaches 
that of Bradshaw for /3 = 0. 

Figure 4, the non-dimensional shear distribution in the wall region, satisfies 
the relation of (6) within the scatter of hot-wire measurements. Thus similarity 
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in the inner layer exists in the shear distribution as well. It should be noted, 
however, that figure 4 gives the turbulent shear only. The exclusion of the laminar 
contribution, considering the relative magnitudes, is a valid approximation of 
the real situation. 

- 2.0 

- 2-1 I 
/ - Bradshaw, @ = 0 - 2.2 

- 2.3 

-2.4 - 

- 2.3 

3 -2.4 

t 

f i gi 
B I 

A 0.055 9 = 0.02299 R;-o'186 

I 

I 
cf = 0.04467 Ri-o'261 I 0 0.263 

A 0.274 

0.485 cf = 0.07063 Ri-0'3261 

- - 723zELB 2.6 2.5- 3.8 4.2 4.6 5.0 

3.4 

log10 ~ W l W  

FIUTJRE 18. Variation of skin friction coefficient. 

In the free-mixing region the maximum shear, as originally suggested by 
Forthmann (1936), is found to be the characteristic quantity for expressing the 
shear stress in a similarity form. Then, as figure 19 definitely indicated 

iz = g12(63), (21) 

where t3 = y - 8,/(8- 8,); that is, for turbulence terms, the flow is divided at S,, 
the point of zero shear. Schwarz & Cosart (1961) and others have used AU,, or Urn 
for the case of zero free stream, as the characteristic term in place of i i E ,  in the 
above equation. While it is true, as figure 20 demonstrates, that (Em)* is linear 
with AU,, the intercept is non-zero. Therefore, it is not a simple matter of 
proportionality. This is not surprising as Corrsin (1943) in his round jet found 
that ($,$/Urn was not constant for results which were taken up to 50 nozzle 
diameters downstream of the jet exit. From figure 20 in conjunction with 
equation (18) it is found that the maximum cnrrelation 

(22) 
__ uvm = 1.22 + 0~00294Uodo~/Y.  
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Figure 21 shows the above equation in comparison with the experimental results 
for velocity ratio /3 = 0.263, 0: lOO and 0.055. Figure 22 displays the measured 
shear as well as the shear calculated from the integration of the Reynolds equation 

(Y - a,)/(&- 83) 

FIGURE 19. Similarity function of shear in outer region. 

0 

AU,,, (ft./sec) 

FIGURE 20. Characteristic velocity for the turbulence. 

for one traverse a t  /3 = 0.263. It is evident from all measurements and the above 
calculation that the location of zero shear point inside the flow always occurs on 
the side of the maximum velocity with the steepest gradient. This observation is 
discussed in detail in another paper. 
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(c)  Turbulence 
In  the inner flow the temporal mean velocity and the correlation Ti5 were found to 
display a boundary-layer type similarity when referred to the shearing velocity 
a t  the wall. From figure 5 one can also conclude that similarity also exists in the 

2, (in.) 
FIGURE 21. Decay of maximum shear. 

measurement 
-- 

Y (in.) 
FIGURE 22. Comparison of measured and computed shear. 



576 V .  Kruka and S. Eskinazi 

longitudinal turbulent velocity component u. In  the outer region the turbulent 
velocities show fair similarity if the same characteristic scales are used as in the 
case of the shear; then 

(Ti2)* = (UEm)&gl(&) and (E2)* = (TiErn)*g2([&. 

Figures 23 and 24 give the experimental results. The authors (1962b) showed 
the inadequacy of AU, as the characteristic velocity. 

b= 0.263 0*100 0.005 - x'/do 
o d 454 
v t d 99.2 
0 8 d 137.4 

. l A  I. .L! A A 6 190.8 
L'V 

1.0 

0 1 I I I -  

0 1.0 2.0 3.0 
1 
4.0 

(Y - 8s)/(S- 8s) 
FIUURE 23. Turbulence similarity in outer region. 

0 . d  
v v d  
0 8 d 137.4 
A A A 190.8 

h o + 6 274.8 

IS 
i 
% 

E 

0 1.0 2.0 3.0 40 

(Y - &)/(8- 8s) 
FIGURE 24. Turbulence similarity in outer region. 
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An interesting observation is shown on figure 25; the longitudinal microscale 
displays a depression in the region. from the location of zero turbulent shear 
to that of maximum velocity. 

Y (in-) 
FI~DRE 25. Microscale distribution. 

5. Conclusions 
Similarity was found to exist in both the inner and the outer layer for mean as 

well as turbulent quantities, however, the same scales do not apply to bothlayers. 
The flow was divided at the Urn location for mean measurements and at UV = 0 
for statistical quantities. This twofold partition was convenient in presenting the 
mean as well as the turbulent measurements. In  any case, the separation between 
these two points is small. 

In  the inner layer the maximum velocity and its location were found to reduce 
the mean velocity to a similarity form independent of x. The width scale was 
found to vary as x for all B’s. The corresponding boundary-layer width is pro- 
portional to 2%. The velocity scale varied as x to a power a where a is a function 
of the free stream to jet velocity ratio. In  the immediate vicinity of the wall a 
universal boundary-layer type similarity exists, though the coefficients, as given 
by figure 16, have different values. The wall shearing velocity and location of 
uv = 0 reduced ‘ci2 and ;ilV to forms independent of x. 

An expression for the wall shearing velocity is derived from which it can be 
seen that U, is proportional to Urn. Experimentally the friction coefficient is 
shown to be proportional to the inner Reynolds’ number raised to a power, and 
consequently not constant with x. 

In  the outer layer a reduced longitudinal distance xs is found necessary for 
comparing results at all B’s. The use of the maximum excess velocity AU, and the 

__ 
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characteristic half width of the free-mixing region (6- 6,) for characteristic 
quantities gives experimental similarity for the mean velocities. Again the 
characteristic width is linear with xs for all p’s and the velocity scale varies as x,“, 
where the exponent a is a function of p. An empirical relation is given for the 
exponent a in terms of p, while the coefficient in the expression for AU, is propor- 
tional to the exit excess Reynolds number. This then permits the complete re- 
construction of the velocity profile at any x once the exit conditions are known. 

The characteristic quantities for the turbulent velocities and the shear are the 
maximum shear and the half width (6-6,). It is definitely shown that the 
maximum excess velocity is not acceptable for the velocity scale here as AU, is 
not proportional to the maximum shear. It is found, however, that there is a 
linear relation between the shear in the free-mixing region and the maximum 
excess velocity, thus permitting the calculation of the turbulent shear from mean 
measurements alone. 

The authors gratefully acknowledge the Air Branch of the Office of Naval 
Research under whose sponsorship this work was undertaken. Mx Howard F. 
Hamm has taken active part in the experimentation and calculation. 
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